

(Co)

-////-

{2 * Ro}

{Co}

R184 {Ro} leapfroc

C108

State Variable = voltage at C8

{2 * Ro}

(Co)

State Variable = current thru L7

-∕W-{Ro} R193

-\/\/ (Ro)

State Variable "Leapfrog" Circuit for emulating an LC LPF

State Variable = voltage at C2

Background: Emulation of Hammond Line Box.

R164

(Example has 4 Inductors, Hammond Line Box has 25 Inductors.)

C102

/W/-

R182

{2 * Ro}

C103

{Co}

Inductor currents and Capacitor voltages of LC circuit are chosen as state variables. Each "tap" of the LC filter is also present in Leapfrog circuit.

State Variable = voltage at C4

R178

-/W/-{Ro}

{Ro}

(Important for Scanning along the Line Box.)

"C"s of LC filter => Integrator with time constant (Ro * Co).

"L"s of LC filter => Integrator with time constant (Ro * Co) = (L / Ro)

Negative polarity of "leapfrog" feedback loops requires inverting and noninverting integrators. (to avoid an extra inverting amplifier)

Inverting integrator is trivial.

(c) J. Haible 2003

1 {2 * Ro}

C101

Noninverting integrator is implemented by un-damping a passive RC-Lag with a negative impedance converter. ("Deboo-Integrator")

Stability issues of the Deboo Integrator _should_ be overcome by the strong damping via leapfrog feedback loops.

THIS IS UNTESTED! (Works great in simulation, so far.)

25-inductor line box will require 25 dual opamps. Not expensive, but will signal quality be good enough at the end of the chain?